Perfect fit for each life stage of a gear.

Lubrication solutions for mineral and cement processing
Excessive wear and flank damage can be avoided if the intermeshing tooth surfaces are completely separated by a lubricant film. This, however, is almost impossible in large gear drives due to the low peripheral speed, the very high flank pressure and the relatively high flank roughness. Furthermore, since pinion and gear rim are supported separately and are aligned during assembly, their axes are often not perfectly parallel, which makes the operating conditions even more severe. As a consequence, large gear drives operate mostly under mixed friction conditions.

To lubricate large gear drives reliably and protect them against damage, the lubricants applied must be highly adhesive, and their physical and chemical properties must be such that they form protective layers on the tooth flanks under the prevailing operating conditions. These protective layers largely prevent direct metal-to-metal contact and hence minimize friction. To create lubricants that have this effect, special types of base oil are selected that have the right viscosity. The lubricants also contain EP (extreme pressure) additives and possibly the right amount and type of solid lubricants.
Increased efficiency, productivity and reliability

Large girth gear drives have proven effective in plant engineering for many decades and continue to be the type of drive most commonly found in ore and cement processing, coal-fired power plants, fertilizer plants, chemical factories, sugar refineries, waste incineration and composting plants. The reliability and operational safety of the drives, and in consequence their lubrication, is of utmost importance.

Functional reliability and damage-free operation of large gear drives highly depend on correct lubrication. To ensure optimum lubrication at all life stages, Klüber Lubrication has developed a systematic lubrication method for large gear drives which has been known for many years under the name of A-B-C-D system lubrication.

Increased efficiency, productivity and reliability

Large girth gear drives have proven effective in plant engineering for many decades and continue to be the type of drive most commonly found in ore and cement processing, coal-fired power plants, fertilizer plants, chemical factories, sugar refineries, waste incineration and composting plants. The reliability and operational safety of the drives, and in consequence their lubrication, is of utmost importance.

Functional reliability and damage-free operation of large gear drives highly depend on correct lubrication. To ensure optimum lubrication at all life stages, Klüber Lubrication has developed a systematic lubrication method for large gear drives which has been known for many years under the name of A-B-C-D system lubrication.

Increased efficiency, productivity and reliability

Large girth gear drives have proven effective in plant engineering for many decades and continue to be the type of drive most commonly found in ore and cement processing, coal-fired power plants, fertilizer plants, chemical factories, sugar refineries, waste incineration and composting plants. The reliability and operational safety of the drives, and in consequence their lubrication, is of utmost importance.

Functional reliability and damage-free operation of large gear drives highly depend on correct lubrication. To ensure optimum lubrication at all life stages, Klüber Lubrication has developed a systematic lubrication method for large gear drives which has been known for many years under the name of A-B-C-D system lubrication.

Increased efficiency, productivity and reliability

Large girth gear drives have proven effective in plant engineering for many decades and continue to be the type of drive most commonly found in ore and cement processing, coal-fired power plants, fertilizer plants, chemical factories, sugar refineries, waste incineration and composting plants. The reliability and operational safety of the drives, and in consequence their lubrication, is of utmost importance.

Functional reliability and damage-free operation of large gear drives highly depend on correct lubrication. To ensure optimum lubrication at all life stages, Klüber Lubrication has developed a systematic lubrication method for large gear drives which has been known for many years under the name of A-B-C-D system lubrication.

Increased efficiency, productivity and reliability

Large girth gear drives have proven effective in plant engineering for many decades and continue to be the type of drive most commonly found in ore and cement processing, coal-fired power plants, fertilizer plants, chemical factories, sugar refineries, waste incineration and composting plants. The reliability and operational safety of the drives, and in consequence their lubrication, is of utmost importance.

Functional reliability and damage-free operation of large gear drives highly depend on correct lubrication. To ensure optimum lubrication at all life stages, Klüber Lubrication has developed a systematic lubrication method for large gear drives which has been known for many years under the name of A-B-C-D system lubrication.

Increased efficiency, productivity and reliability

Large girth gear drives have proven effective in plant engineering for many decades and continue to be the type of drive most commonly found in ore and cement processing, coal-fired power plants, fertilizer plants, chemical factories, sugar refineries, waste incineration and composting plants. The reliability and operational safety of the drives, and in consequence their lubrication, is of utmost importance.

Functional reliability and damage-free operation of large gear drives highly depend on correct lubrication. To ensure optimum lubrication at all life stages, Klüber Lubrication has developed a systematic lubrication method for large gear drives which has been known for many years under the name of A-B-C-D system lubrication.

Increased efficiency, productivity and reliability

Large girth gear drives have proven effective in plant engineering for many decades and continue to be the type of drive most commonly found in ore and cement processing, coal-fired power plants, fertilizer plants, chemical factories, sugar refineries, waste incineration and composting plants. The reliability and operational safety of the drives, and in consequence their lubrication, is of utmost importance.

Functional reliability and damage-free operation of large gear drives highly depend on correct lubrication. To ensure optimum lubrication at all life stages, Klüber Lubrication has developed a systematic lubrication method for large gear drives which has been known for many years under the name of A-B-C-D system lubrication.

Increased efficiency, productivity and reliability

Large girth gear drives have proven effective in plant engineering for many decades and continue to be the type of drive most commonly found in ore and cement processing, coal-fired power plants, fertilizer plants, chemical factories, sugar refineries, waste incineration and composting plants. The reliability and operational safety of the drives, and in consequence their lubrication, is of utmost importance.

Functional reliability and damage-free operation of large gear drives highly depend on correct lubrication. To ensure optimum lubrication at all life stages, Klüber Lubrication has developed a systematic lubrication method for large gear drives which has been known for many years under the name of A-B-C-D system lubrication.

Increased efficiency, productivity and reliability

Large girth gear drives have proven effective in plant engineering for many decades and continue to be the type of drive most commonly found in ore and cement processing, coal-fired power plants, fertilizer plants, chemical factories, sugar refineries, waste incineration and composting plants. The reliability and operational safety of the drives, and in consequence their lubrication, is of utmost importance.

Functional reliability and damage-free operation of large gear drives highly depend on correct lubrication. To ensure optimum lubrication at all life stages, Klüber Lubrication has developed a systematic lubrication method for large gear drives which has been known for many years under the name of A-B-C-D system lubrication.

Increased efficiency, productivity and reliability

Large girth gear drives have proven effective in plant engineering for many decades and continue to be the type of drive most commonly found in ore and cement processing, coal-fired power plants, fertilizer plants, chemical factories, sugar refineries, waste incineration and composting plants. The reliability and operational safety of the drives, and in consequence their lubrication, is of utmost importance.

Functional reliability and damage-free operation of large gear drives highly depend on correct lubrication. To ensure optimum lubrication at all life stages, Klüber Lubrication has developed a systematic lubrication method for large gear drives which has been known for many years under the name of A-B-C-D system lubrication.

Increased efficiency, productivity and reliability

Large girth gear drives have proven effective in plant engineering for many decades and continue to be the type of drive most commonly found in ore and cement processing, coal-fired power plants, fertilizer plants, chemical factories, sugar refineries, waste incineration and composting plants. The reliability and operational safety of the drives, and in consequence their lubrication, is of utmost importance.

Functional reliability and damage-free operation of large gear drives highly depend on correct lubrication. To ensure optimum lubrication at all life stages, Klüber Lubrication has developed a systematic lubrication method for large gear drives which has been known for many years under the name of A-B-C-D system lubrication.
Klüberplex AG 11-462 and GRAFLOSCON A-G 1 ULTRA

Gear protection starts even before the gears are installed, i.e. during transportation and storage, and then continues during assembly and the first gear rotations. Our priming lubricants support the open gear in the first life stage that may be decisive for a long and carefree lifetime.

Priming lubricants are products containing a high percentage of additives and are applied prior to the initial operation of gear drives. They may be used in all spur or helical girth gear drives, irrespective of the subsequent lubrication method used.

Priming lubricants are usually applied manually by spatula or brush.

The main tasks of priming lubricants are:
- They protect teeth against corrosion until the drive is operational for the first time.
- During assembly and alignment, they lubricate and protect against initial damage due to overloading.
- They serve as a contrast lubricant for a first impression of the dynamic contact pattern.

Priming lubricants are safe to use since they only remove material in the high spots of the tooth profile in order to reduce the surface roughness. Reducing the surface roughness leads to higher pitting resistance and a more uniform contact pattern.

Klüberfluid B-F 1 Ultra, Klüberfluid B-F 2 Ultra and GRAFLOSCON B-SG 00 ULTRA

Running-in products are used for the running-in of new gear drives to smoothen rough surfaces and improve the contact pattern of the tooth flanks. Due to their special additives, they cause a controlled, minimum amount of chemical wear.

Benefits:
- Short application time of 500–600 hours
- Wide operational temperature range
- Longer service interval through smoothened tooth flank surfaces
- All application methods possible for Klüberfluid B-F 1 Ultra, Klüberfluid B-F 2 Ultra

Specific consumption quantities for running-in lubrication

<table>
<thead>
<tr>
<th>Type of installation/drive</th>
<th>Specific consumption quantity [g/cm²/op hrs.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotary drum drives (e.g. cooling units)</td>
<td>4</td>
</tr>
<tr>
<td>Single-pinion kiln drives</td>
<td>5</td>
</tr>
<tr>
<td>Single-pinion mill drives</td>
<td>6</td>
</tr>
<tr>
<td>Large single-pinion mill drives and double-pinion kiln drives</td>
<td>7</td>
</tr>
<tr>
<td>Double-pinion mill drives</td>
<td>8</td>
</tr>
</tbody>
</table>

Tooth flank width: 800 mm
Girth gear diameter: 6,000 mm
Determined quantity: approx. 30 kg

Recommended quantity of priming lubricants

<table>
<thead>
<tr>
<th>Tooth width [mm]</th>
<th>Required quantity [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>1</td>
</tr>
<tr>
<td>300</td>
<td>2</td>
</tr>
<tr>
<td>400</td>
<td>3</td>
</tr>
<tr>
<td>500</td>
<td>4</td>
</tr>
<tr>
<td>600</td>
<td>5</td>
</tr>
<tr>
<td>700</td>
<td>6</td>
</tr>
<tr>
<td>800</td>
<td>7</td>
</tr>
<tr>
<td>900</td>
<td>8</td>
</tr>
<tr>
<td>1,000</td>
<td>9</td>
</tr>
</tbody>
</table>

Example
- Tooth flank width: 800 mm
- Girth gear diameter: 6,000 mm
- Determined quantity: approx. 30 kg

Example
- Tooth flank width: 800 mm
- Girth gear diameter: 6,000 mm
- Determined quantity: approx. 30 kg
Type C – High-viscosity fluids

Leading-edge technology

Over 20 years ago, Klüber Lubrication invented a range of transparent open gear lubricants to meet the demands of large girth gear drives. The transparent formulation adds on to our black product portfolio range.

With a wide range of available viscosities, the Klüberfluid C-F series can be used in spray, circulation, and immersion systems in all climates.

Protection and low consumption

Low consumption in combination with the best gear protection on the market is our aim. Modern high-viscosity fluids offer both. For example a double-pinion mill gear drive with 650 mm width can be operated with as little as around 3 kg of lubricant per day. The indicated specific consumption quantities are based on the following assumptions:
- No major damage to the tooth flanks
- Sufficient contact pattern
- Thorough and regular inspection and maintenance of the gear drive and the spray system
- Normal operating conditions
- Good spray pattern

The lubricant temperature must be set to allow unimpeded pumping and spraying. This depends on the type of lubrication system used.

The Klüberfluid C-F series has been tested and approved by major OEMs of mills, kilns, dryers, etc. and meets the viscosity requirements outlined in AGMA 6014-B15 Annex D.

Klüberfluid sets the benchmark for wear protection of open gears.

<table>
<thead>
<tr>
<th>Ambient climate</th>
<th>Specialty lubricant</th>
<th>Approx. base oil viscosity at 40 °C [mm²/s]</th>
<th>Characteristics</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warm</td>
<td>Klüberfluid C-F 3 M Ultra</td>
<td>25,500</td>
<td>750</td>
<td>For extremely heavily loaded gears</td>
</tr>
<tr>
<td>Warm</td>
<td>Klüberfluid C-F 7 Ultra</td>
<td>25,000</td>
<td>1,000</td>
<td>Fully synthetic lubricant meets old standard ANSI/AGMA 6005-E02 Annex D-2</td>
</tr>
<tr>
<td>Moderate</td>
<td>Klüberfluid C-PG 17 Ultra</td>
<td>17,000</td>
<td>2,700</td>
<td>Highest base oil viscosity at 100 °C available on the market. Excellent pumpability without the use of diluent/solvent</td>
</tr>
<tr>
<td>Moderate</td>
<td>Klüberfluid C-F 3 Ultra</td>
<td>16,500</td>
<td>800</td>
<td>Balanced base oil viscosity for high film thickness and sprayability</td>
</tr>
<tr>
<td>Moderate</td>
<td>Klüberfluid C-F 8 Ultra</td>
<td>8,000</td>
<td>320</td>
<td>Excellent low temperature performance</td>
</tr>
<tr>
<td>Cold</td>
<td>Klüberfluid C-F 3 Ultra</td>
<td>4,900</td>
<td>360</td>
<td>Fully synthetic lubricant meets old standard ANSI/AGMA 6005-E02 Annex D-2</td>
</tr>
<tr>
<td>Cold</td>
<td>Klüberfluid C-F 3 S Ultra</td>
<td>4,000*</td>
<td>202.5</td>
<td>Excellent low temperature sprayability due to use of diluent</td>
</tr>
<tr>
<td>Cold</td>
<td>Klüberfluid C-F 4 Ultra</td>
<td>3,100</td>
<td>165</td>
<td>Improved low temperature sprayability without use of diluent</td>
</tr>
</tbody>
</table>

* = with diluent

Pinion/girth gear with Klüberfluid C-F 3 Ultra: inspection and documentation easy with strobe light or high-resolution digital camera while running.

Wear – FZG test results (A/2.8/50)

Klüberfluid C-F 3 Ultra

Competitor product 1

Competitor product 2

≤ 0.00

0.00 ≤ 0.05

0.05 ≤ 0.10

0.10 ≤ 0.25

Klüberfluid sets the benchmark for wear protection of open gears.
Type C – Gear greases containing solid lubricant

Well-proven performance for decades

These open gear lubricants are based on soaps and mineral or semi-synthetic base oils. Klüber Lubrication offers a broad range of these lubricants in order to match the customer requirements in different environments around the world. Gear greases containing solid lubricant offer the customer operating safety that has been proven by decades of experience. Furthermore these lubricants are the first choice if cost efficiency is a target. Another advantage of these lubricants is to visualize the contact pattern easily by the contrast to the gear material.

Approximate base oil viscosity at 40 °C

<table>
<thead>
<tr>
<th>Approximate base oil viscosity at 40 °C [mm²/s]</th>
<th>Type of installation / drive Specific consumption quantity [g/cm²/op.hrs.]</th>
<th>Type of lubricant</th>
<th>Base oil type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate Klübersynth OA 06-15000</td>
<td>17,000 Mineral - High-viscosity base oil with integrated white solid lubricants for reduced risk of gear failures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warm Klüberfluid C-F 2 Ultra</td>
<td>3,200 Mineral - Suitable for normal to elevated operating temperatures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warm GRAFLOSCON C-SG 2000 ULTRA</td>
<td>2,000 Mineral / synth. HC oil - Especially suitable for application under hot climatic conditions - Prevents wear even at high loads - Better viscosity temperature behavior due to semi synthetic base oil enhances operation over a wide temperature range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate GRAFLOSCON C-SG 1000 ULTRA</td>
<td>1,000 Mineral - Prevents wear even at high loads - Recommended by leading OEMs like FLSmidth, ThyssenKrupp, KHD, Ferry Captain, Cemtech, Hoffmann Engineering, etc. and used by leading global players</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate GRAFLOSCON C-SG 0 ULTRA</td>
<td>680 Mineral - Recommended by leading OEMs like FLSmidth, ThyssenKrupp, KHD, Ferry Captain, Cemtech, Hoffmann Engineering, etc. and used by leading global players</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cold Klübersilcatan LG 39-700 N</td>
<td>680 Ester - Biodegradability with 90% renewable raw materials - Excellent low-temperature pumpability - Excellent FZG results for scuffing and wear protection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cold Klüberfluid C-F 1 Ultra</td>
<td>250 Mineral - Suitable for low operating temperatures down to -15 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extreme cold GRAFLOSCON C-SG 00 LT</td>
<td>130 Mineral / synth. HC oil - Highly efficient and reliable operation even at low service temperatures - Excellent pumpability at low temperatures with good adhesion at high temperatures</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Specific consumption quantities for operational lubricants

<table>
<thead>
<tr>
<th>Type of installation / drive</th>
<th>Specific consumption quantity [g/cm²/op.hrs.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear greases containing solid</td>
<td>High-viscosity fluids</td>
</tr>
<tr>
<td>lubricant</td>
<td></td>
</tr>
<tr>
<td>Rotary drum drives (e.g. cooling units)</td>
<td>1.0 to 1.5 0.5 to 0.8</td>
</tr>
<tr>
<td>Single-pinion kiln drives</td>
<td>1.5 to 2.0 0.8 to 1.0</td>
</tr>
<tr>
<td>Single-pinion mill drives</td>
<td>2.0 to 2.5 1.0 to 1.3</td>
</tr>
<tr>
<td>Large single-pinion mill drives and double-pinion kiln drives</td>
<td>2.5 to 3.0 1.3 to 1.5</td>
</tr>
<tr>
<td>Double-pinion mill drives</td>
<td>3.0 to 3.5 1.5 to 1.6</td>
</tr>
</tbody>
</table>

Film endurance test

Estimation of emergency lubrication behavior by film endurance test at a FZG back-to-back test rig. After initial lubrication the gears are tested at a constant speed / radial acceleration and load until a failure occurs. The radial acceleration of 6.6 m/s² is typical of a kiln whereas 52 m/s² is the acceleration of a mill drive.
Type D – Repair lubricants

Prolong your gear service time with Klüberfluid D-F 1 Ultra and GRAFLOSCON D-SG 00 ULTRA

Flank surfaces often become damaged for a variety of reasons, which can lead to an inadequate contact pattern. To prevent breakdowns, the gear is often repaired by means of mechanical treatment, which might even make the situation worse. With the cost of downtime increasing and lead times of new gears in excess of several months, Klüber Lubrication has a solution to repair the gear while remaining in operation under full load. The repair lubricants are applied by one of our service engineers while the gear is in operation. These compounds are adapted chemically and physically to subject metallic surfaces to mechanical, chemical, and corrosive wear. The material is worn off incrementally and evenly at the contact points as the product is being applied in addition to the operational or running-in lubricant. Scuffing, scratches, pittings, plastic deformation, and scoring can be reduced, which causes an improved contact pattern and avoids peak loads. This can extend the lifetime of the gear system. We recommend that repair lubricants be only applied by trained Klüber Lubrication service engineers.

Your benefits:
- Repair lubrication, improvement of tooth flank condition
- Gear is repaired without down time as it is performed during full operation of the gear
- Lower tooth flank temperatures and more even temperature distribution
- Improved tooth flank contact pattern and smoother tooth flanks
- Reduced vibrations
- Extended gear lifetime

Klüber Lubrication offers its customers a comprehensive engineering service. Nothing is better than having an extra pair of eyes inspecting your open gear frequently. Our open gear experts are available around the globe in almost every major mining and cement producing country. Our engineering services are comprised of three stages.

Inspection
- Vibration measurements on the pinion bearings
- Tooth flank temperature readings while the drive is operating via laser gun or thermal imager
- Inspection of the pitch circle alignment
- Inspection of the central lubrication system and spray pattern
- Silicone rubber impressions of the tooth flank surfaces
- Visual inspection of the tooth flanks by means of stroboscope while the drive is operating
- Assessment of the tooth flanks’ condition and load distribution
- Used lubricant analysis in sump and immersion systems to achieve maximum lubricant lifetime

Technical documentation / recommendation
- Detailed reporting through inspection reports
- Photo-documentation of the tooth flank surfaces and the spray pattern
- Technical recommendation of corrections and improvements to prolong the gear’s lifetime
- Gear damage and root cause analysis
- Central lubrication system optimization recommendation
- Close cooperation with the OEM

Repairs and optimization
- Repair of tooth flank damage with our unique Klüberfluid D-F 1 Ultra and GRAFLOSCON D-SG 00 ULTRA
- Repairs and optimization of the central lubrication system, e.g. spray pattern, spray time and lubricant consumption
- Mechanical tooth flank treatment if significant damage has occurred

Comprehensive engineering service

Effects of repair lubricants for open gears

- Smoothing of flanks during damage repair
- Change of the involute shape during damage repair

Measurement point
1. Tooth flank with scuffing damage
2. Effect of the running-in lubricant after approx. 250 operating hours
3. Effect of the repair lubricant after approx. 20 operating hours

Measurement point
1. Involute changed by damage
2. Effect of the running-in lubricant after approx. 250 operating hours
3. Effect of the repair lubricant after approx. 20 operating hours

Tooth flanks before repair lubrication

Tooth flanks after repair lubrication
Notes

Publisher and Copyright:
Klüber Lubrication München SE & Co. KG

Reprints, total or in part, are permitted only prior consultation with Klüber Lubrication München SE & Co. KG and if source is indicated and voucher copy is forwarded.

The data in this document is based on our general experience and knowledge at the time of publication and is intended to give information of possible applications to a reader with technical experience. It constitutes neither an assurance of product properties nor does it release the user from the obligation of performing preliminary field tests with the product selected for a specific application. All data are guide values which depend on the lubricant’s composition, the intended use and the application method. The technical values of lubricants change depending on the mechanical, dynamical, chemical and thermal loads, time and pressure. These changes may affect the function of a component. We recommend contacting us to discuss your specific application. If possible we will be pleased to provide a sample for testing on request. Products from Klüber Lubrication are continually improved. Therefore, Klüber Lubrication reserves the right to change all the technical data in this document at any time without notice.

Klüber Lubrication München SE & Co. KG
Geisenhauserstraße 7
81379 München
Germany

Local first-instance court Munich, Germany
Certificate of registration 46924

Picture Copyrights:
Title: © Gordon Galbraith, www.shutterstock.com;
Page 7: © Sylvain COLLET, www.fotolia.com
Innovative tribological solutions are our passion. Through personal contact and consultation, we help our customers to be successful worldwide, in all industries and markets. With our ambitious technical concepts and experienced, competent staff we have been fulfilling increasingly demanding requirements by manufacturing efficient high-performance lubricants for more than 85 years.